CNB12 Formulae for d,e,f,g ; Table of Primorials

September 16th, 2012

In this Blog we shall give formulae for obtaining the frequencies of the 2-vecs d, e, f, and g at the ends of calculations of the cap primorials 22Λ3 , 2Λ3Λ5 , … . We shall index them by k, where p(k) is the kth prime. We also give, first,  a table of primorials for k = 1 to 8, together with values for what we call reduced primorials. We shall use the symbol X(k) (i.e.  CHI-k) for the kth primorial. And X(k, -1), X(k, -2) will denote the first and second reduced primorials respectively, to be explained next.

The first three primorial formulae (on numbers, not cycle-numbers)

The following products are calculated by sequential ordinary multiplication  (i.e. not using  cap products):

  Xk    =   pk p(k-1) p(k-2) … p3 p2 p1               ( = pk# )

Xk(-1) =  (pk-1) (p(k-1)­-1) …  (p2-1) (p1-1)    ( = (p­k-1)# )

Xk(-2) =  (pk-2) (p(k-1)­-2) …  (p2-2) (p1-2)    ( = (p­k-2)# )

 

The first three primorial formulae (on  cycle-numbers)

When computing primorials on cycle-numbers, the same formulae apply, but with cap multiplication. For example,

                                                             X =  2’ Λ 3’ Λ 5’  =  30

 

 

Table of the Primorials on numbers

k pk Xk Xk(-1) Xk(-2)
1 2 2 1 1
2 3 6 2 1
3 5 30 8 3
4 7 210 48 15
5 11 2310 480 135
6 13 30030 5760 1485
7 17 510510 92160 22275

Formulae for d, e, f, g

We shall now give formulae for the frequencies of 2-vecs d, e, f, g for two cases: (i) when the cap primorials are calculated from rows of the cycle-number matrix C, and (ii) when the cap primorials are calculated from a matrix called C’ which is derived from C in a manner to be described in a later blog.

Case (i) : calculations from C

d(k) =  X(k-1) – X(k-1 ; -1)  ;

e(k) =  d(k).(p(k) – 1)  ;

f(k)  =  g(k-1)  ;

g(k) =  g(k-1).(p(k) – 1) .      [ Observe that:    g(k)/f(k)  =   e(k)/d(k)  =  (p(k) – 1) . ]

Table of d, e, f, g vakues, for C and k = 1, 2, 3, 4, 5

k

pk – 1

dk

ek

fk

gk

1

1

0

0

1

1

2

2

1

2

1

2

3

4

4

16

2

8

4

6

22

132

8

48

5

10

162

1620

48

480


Case (ii) : calculations from C’

d'(k)  =  2(X(k) – X(k ;  -2))  ;

e'(k)  =   d'(k).(p(k) – 2)  ;

f”(k)  =  2X(k-1 ;  -2) = 2g'(k-1)  ;

g'(k)  =  X(k ;  -2)  =   g'(k-1).(p(k) – 2) .  Observe that:   g'(k)/f'(k)  =  e'(k)/d'(k)  = (1/2). (p(k) – 2) .

Table of d, e, f, g values, for C’ and k = 1  to  5

 

k

p’k – 1

d’k

e’k

f’k

g’k

1

0

0

0

0

1

2

1

2

1

2

1

3

3

10

15

2

3

4

5

54

135

6

15

5

9

390

1755

30

135


        [to be continued, with explanations of C’ ]

Leave a Comment